
BUSINESS WHITE PAPER

What To Look For In A 
WebRTC Testing Tool?
WebRTC testing tools aren’t 
born equal. Here’s what you 
need to remember for your 
own WebRTC testing (and 
monitoring) needs.



CONTENTS

2

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

About The 
Author
Tsahi joined the Cyara team in 2023, following the acquisition 
of Spearline. Prior to that, Tsahi was the Co-founder and CEO of 
testRTC Ltd., which was acquired by Spearline in 2021.

Over the past two decades, 
Tsahi has been actively involved 
in the development of diverse 
telecommunication projects, 
particularly those related to 
WebRTC, VoIP, and 3G. His 
experience spans across 
development, management, 
marketing and CTO positions at 
RADVISION and later Amdocs. 
His notable contributions 
include developing the 3G-324M 
protocol stack from scratch, as 
well as overseeing the team responsible for the development and 
maintenance of the H.323 protocol stack.

Tsahi’s educational background includes an MSc in Computer 
Science and an MBA with a specialization in Entrepreneurship 
and Strategy. He has several patents to his name and has 
served as chairman for various activity groups within the IMTC, 
an organization focused on interoperability and multimedia 
standards.

For the past 10 years, Tsahi has been working as a consultant, 
analyst and entrepreneur on anything related to WebRTC, CPaaS 
and their potential for disruption; through his consulting firm 
BlogGeek.me.

3 Common Misconceptions

4 Planning for your WebRTC 
Testing

5 The Main Actors In Every 
WebRTC Application

6 5 Critical Aspects Of Any 
WebRTC Testing Tool

11 Monitoring and 
Optimization

12 Is testRTC (and 
testingRTC) The Right 
Tools For You?

13 The Devil is in The Details

Tsahi Levent-Levi
Senior Director of 

Product Management

https://cyara.com/


3

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

Common 
Misconceptions

When developing WebRTC applications, testing is often neglected and “saved for last”. This 
approach typically stems from several misconceptions:

1. That no further testing is needed as the WebRTC technology is part of the web browser.
2. That the same best practices and approaches used to test websites also apply to 

WebRTC.
3. That the testing of commercial products and video APIs has already been taken care of 

when utilizing open source packages.
4. That the outsourcing vendor you use thoroughly tests the application they are developing 

for you.

The truth? None of the above are true.

How do I know? Because I’ve seen it time 
and again with vendors requiring guidance 
and assistance when things break down or 
don’t work as advertised. Unfortunately, it is 
usually quite late in the process and could 
have been easily avoided.

You will have already seen how the cost 
of bugs can grow the longer they are left 
undetected:

With all of WebRTC’s moving parts, these 
bugs can be worse than usual, so finding 
them as early as possible is even more 
important.

Production /
Post Release

System /
Acceptance Testing

Integration /
Component Testing

CodingRequirements /
Architecture

The cost of bugs at each stage

https://cyara.com/


4

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

There are two main things to remember when planning your WebRTC testing:

This means that you will be using multiple tools for your testing purposes. Some tools will be used to assist you 
with your manual testing while others will be used for your WebRTC testing automation.

For planning, go through the functional and non-functional requirements that you have. The main things you will 
need to collect at this stage are answers to the following questions:

Planning For 
Your WebRTC 
Testing

1
Not all of your test scenarios 
can be covered with automated 
testing. 2

The more you can cover with 
automated testing, the better 
your life is going to be!

1
What is the simplest 

test scenario you need 
covered?

4
At what point do you 
predict scale out on 
your media servers’ 

infrastructure?

2
How many browsers 

(users) can join a single 
session?

5
How do users join a 

session?

3
What scale do you need 

your service to cover? How 
many sessions and users 

will run concurrently?

6
Where do your 

users come from 
geographically?

Once you have your answers for these questions, you can use the following sections to add a few more questions 
and requirements to your WebRTC testing plan.

https://cyara.com/


5

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

The Main Actors 
In Every WebRTC 
Application

When developing and deploying a WebRTC application, there are 4 main actors:

YOUR APP BROWSERS NETWORKS USER DEVICE AND 
PERIPHERALS

Here’s the secret truth - you don’t control or own most of these components. You only control your application and 
the rest… well, they’re out of your control!

Your application - this is what you 
develop and put out into the world. 
You control and own it - how it 
operates, what logic it uses, etc.

Web browsers - assuming 
your application runs on the 
web, then you don’t control the 
browsers used to interact with 
your application. You can’t just 
ask Google or Apple to hold 

off on the next browser upgrade to avoid breaking 
your application. You can’t get them to implement 
the specific codecs you want or provide a specific 
behavior. You need to be able to deal with what you 
get and to keep up to date with the frequent browser 
updates.

The network - running on the open 
internet means the media is sent over 
unmanaged networks. For better or 
worse, you can’t ask users to make calls 
over a good network. Well… you can, 
but you can’t force them to - they will at 
some point conduct a call while driving 
a car or even from inside an elevator.

The user’s device and peripherals - users 
will use whatever device they want and 
connect various peripherals to them. 
The variety of devices out there is huge, 
and as with networks, getting your users 
to choose the ones you want and have 
vetted is highly unlikely to happen.

https://cyara.com/


6

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

The 4 actors in our WebRTC applications which we just discussed are going to drive a lot of what we do and how 
we plan with a WebRTC testing tool. Now, let’s take a look at the 5 critical aspects of any WebRTC testing tool.

1. Browser Automation
At its most simple, a WebRTC testing tool relies on browser automation. To test a WebRTC application that runs 
on real browsers, it makes sense to also automate real browsers to validate it - this is as close as you could get to 
imitating real users in the real world.

Even if your application runs as a native application built on top of Google’s WebRTC implementation, you would 
be better running most of your testing using browser automation. That’s because the implementation you are 
going to bump into using web browsers will be quite similar to those of native applications using the same 
WebRTC code.

Besides taking care of browser automation, you will also need to bear in 
mind the upgrade frequency of browsers.

Most modern browsers get updated on a monthly cadence now. This 
means that each month, something may break in your application due to 
changes in WebRTC. Such changes are taking place so frequently and 
cause so many problems that this should always be a priority for you.

For browser automation, upgrading a browser will usually mean you will 
also need to upgrade:

• Your web browser
• WebDriver: a component used on top of browsers to enable 

automation
• Selenium: an open source framework for browser automation

5 Critical Aspects Of Any 
WebRTC Testing Tool

Before we start, it is important to remember something: VoIP and WebRTC are different.

While WebRTC is practically VoIP, you still shouldn’t be thinking that way in many cases. Why? Because of this:

WebRTC is part VoIP and part Web. As such, if you only apply 
the concepts, rules and tools from the VoIP world on it - you are 
bound to fail. And likewise, if you only apply concepts, rules and 
tools from the Web world on it - you will still fail. What you need 
is something in-between, a balanced combination that takes into 
account both of these worlds.

Let’s see exactly what this means…

Puppeteer can also 
be used instead of 

Selenium. While it’s a 
different tool, it does 

come with similar 
headaches.

https://cyara.com/


2. Simulating Network Behavior
WebRTC needs to have its data delivered in real time. This means really low latency is a necessity.

If you watch a Netflix or Disney+ movie, it won’t matter if the media is delivered to you in a second or two, or even 
five. The server is likely sending you a few seconds worth of buffered content and the end of the movie will not 
change as you watch it…

WebRTC is different; whatever is being sent needs to be live and interactive. This means that what you have been 
previously taught about web testing needs to now get a WebRTC update.

We typically look at media quality in WebRTC in terms of specific media metrics: bandwidth, packet loss, jitter 
and latency. In general, if bandwidth is low or if the packet loss, jitter or latency is high, it is going to cause media 
quality to degrade.

The last mile has a lot to contribute here - the user’s location is going to determine these conditions. For the last 
mile, we can look at 4 areas:

The ISP connection - how 
the user is connected to 
the internet 

The user’s location in their environment - how far they are 
from the access point; disturbances for reception such as 
being in an elevator or a basement; sharing the connection 
with other household members or neighbors, etc.

The geographic location of the 
user, in relation to the media 
servers and other participants in 
the session

The fact that network conditions change 
dynamically

1 2

3 4

Here’s what you’ll need in your WebRTC testing for that to happen:

• Solid and repeatable testing infrastructure. If you run the same test multiple 
times, it would be preferable if you could generate the same or similar results.

• The ability to run your test automation machines from multiple regions across the 
globe. This will let you simulate scenarios that are closer to the real world, as well 
as check your geolocation policies.

• Control the tested browser’s network behavior. You should be able to configure 
its available bitrate, inject packet loss, affect jitter and latency. And you should be 
able to do these dynamically and programmatically in test scenarios.

As a WebRTC application developer, you can’t just ignore these areas and attribute them to your users, but 
instead you need to be able to work around them and find ways to improve the perceived media quality. To do this 
requires a lot of testing and optimization.



8

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

3. Device Differences
Let’s move from the user’s network to their device. 
Here again, not all devices are born equal.

WebRTC is a significant resource hog. It requires 
CPU and memory to run, and usually a lot more than 
many other web applications would. This is due to 
the need to encode and decode media (we’re not 
even including the machine learning algorithms used 
for background blurring or noise suppression here).

Different devices are going to be… different. They 
run on different operating systems, have different 
CPUs with different power capabilities and they 
may or may not have hardware acceleration for 
media compression. Devices are connected to 
different cameras, they might use internal or external 
microphones or have different display resolutions.

Here’s what you can do about it:

• Have the ability to configure the virtual 
machines you are using in your WebRTC 
testing automation to simulate different 
types of devices.

• Get your test automation to use raw 
camera and microphone inputs and not 
pre-compressed media. This is critical 
to really test and evaluate your WebRTC 
performance.

• Manual testing. Unfortunately, there’s no 
way to get rid of this one for the moment. 
However, while doing it you will need to have 
a mechanism to collect all data and metrics 
to make it easier to debug (thankfully there’s 
a testRTC product for that).

4. Your Own Application’s 
Behavior
Your application - your code. This means you have 
full ownership and control of this part of your 
service.

We’ve already seen that testing your application 
needs to take place using browser automation and 
that the virtual machines you use need to be “big 
enough” to handle voice and video calls.

The reason we are using browser automation also 
arises from the fact that your application has a 
very specific workflow. It is the one you’ve already 
defined and decided upon. This dictates when and 
how users interact with your service and join the 
session.

But, as always, the devil is in the details. And in this 
case, in the fact that it “takes two to tango”.

Let’s look at two key aspects here - session and 
scale.

A. Synchronization Of A Single 
WebRTC Session
For most cases, and for the majority of test 
scenarios, you will need at least two users. After all, 
your WebRTC service is about humans interacting… 
so unlike most other browser automation solutions, 
you will need a solution that has similar out of band 
interaction between the automated browsers.

What does that mean? Say your service is an 
education service. The teacher needs to join the 
room before the students join. Students will need 
to enter a waiting room and they can then join the 
virtual class once the teacher is present.

https://cyara.com/
https://cyara.com/products/testingrtc/


9

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

How do you go about scripting these rules into your 
browser automation? How can your test environment 
know that the teacher arrived, so as to check with 
the student’s browser that they were moved from the 
waiting room to the classroom?

Even worse… say your service creates an ad-hoc 
meeting link for the first user, which is sent out without 
context to the other participants. How do the other 
participants with the new URL join the original room?

That’s the thing about “taking two to tango”:

• You need messages passing between the 
browsers in a test to be able to send such 
synchronization messages and wait for them.

• Bonus point if these can also be used to check 
the effects on media behavior on one browser 
due to the actions taken on another browser in 
the same call.

• Another bonus point if you can create 
expectations and assertions on virtually any 
WebRTC media metric and on different slices 
of your test period (it is one thing to test 
frames per second or audio level averages 
for the whole scenario, but it is another thing 
to do it to validate that muting and unmuting 
channels work properly).

B. Scaling A Test Scenario
Once you nail down the single session scenario, it is 
time to think about scaling it up.

A single WebRTC session today can have just one 
user or two, but it could also have hundreds or even 
thousands of participants.

And then there’s the fact that you’d also like to test 
how multiple sessions in parallel behave.

Running a Selenium Grid is straightforward these days, 
but doing it across multiple regions, while handling 
messages passing between browsers and getting all 
these Selenium machines to be individually controlled 
for network conditions - that’s trickier.

Sprinkle on the need to ask (or beg) for quotas from 
your favorite cloud vendor (you’d be surprised how 
unlimited cloud resources become limited a week prior 
to Black Friday for example), and you have the perfect 
recipe for a real headache.

5. Visibility And Repeatability
We’ve already examined the actors in WebRTC 
applications and how they affect the user experience, 
along with what we need to do in order to test and 
monitor them properly. But there’s an elephant in the 
room that needs to be addressed as well. This one is 
called visibility and repeatability.

If you can test an issue to find a certain behavior, but 
you can’t really reproduce it, then it has no value for 
you.

Once an issue is found by a monitor, if you can’t 
visualize the results, it’s going to be challenging for 
you to debug.

What does that mean exactly?
Having a solution that can’t be reliably executed on 
demand yielding similar enough results will cause 
more problems than help. Once a bug is flagged and 
moved to the developers - how can developers figure 
out what’s going on if they can’t rerun the scenario 
causing the issue? How would the QA team test to 
validate that the fix provided by the developers really 
solves the problem?

Setting up a testing environment that can run tests, 
but doesn’t collect the data you need or which doesn’t 
visualize the data it collects means that you will be 
spending a ton of time trying to figure out what is 
going wrong and why. The tools you are looking for 
should be those that point you as quickly as possible 
towards the problem and from there assist in figuring 
out the root cause.

• Make sure your testing infrastructure is capable 
of scaling properly and on demand, with as 
little interaction from ops engineers as possible 
(you’ll thank me later!).

• Check which test features and capabilities are 
“sacrificed” while running at scale - the logs and 
messages you won’t be able to collect with your 
tools at that point.

• See what kind of visualizations and drilldowns 
are available for you at scale. You don’t want to 
find yourself staring at endless CSV files looking 
for the culprit which is causing that bug in a 
large stress test.

https://cyara.com/


W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com 10

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

Here’s what you should be looking for:

• Collect, analyze and visualize EVERYTHING that you can with and 
around WebRTC.

• To be more specific, you should collect WebRTC statistics (via 
getstats), WebRTC API calls and events, machine performance, 
browser logs, custom events, etc.

• Bonus point if there’s an easy way to compare scenarios - look 
at results across tests to see how performance has changed 
between them for important KPIs. testRTC has a performance 
dashboard just for that.

Manual Testing
Here is something that has to be said - no matter the technical solution(s) you are going to go with - you will still 
need to rely on manual testing as well.

WebRTC is so varied in the devices and networks it operates on that testing everything all the time is simply not 
feasible. At least not yet! This means that you’ll either need to decide not to test some things at all (that 1,000,000 
browsers test you always dreamed about for your startup app) or you’ll need to make do with manual testing.

Be sure to factor 
manual testing into 

your test plans.

https://cyara.com/


1111

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

Here’s something we both know - testing is 
just the beginning of the journey. 

Once we’re “done” testing and we deploy 
our application, we need to maintain it. This 
includes monitoring, fixing issues for users, 
optimizing it, making sure it works with 
upcoming browser releases, etc.

We did testing on day one. Now, how are we 
going to monitor our application and optimize 
it on day two?

Are we going to build yet another set of tools and technologies for monitoring? Should we use different 
commercial solutions from different vendors for our testing and monitoring? This 
would mean multiple invoices… multiple signup forms… multiple 
dashboards to learn… multiple learning curves to go 
through… multiple support teams to reach out to…?

Monitoring and 
Optimization 

11

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

Having a “single throat to 
choke” for your testing 

AND monitoring needs is a 
huge advantage.

Did I mention that we offer 
testing, monitoring and 

support related solutions for 
your WebRTC applications?

https://cyara.com/


12

W
h

a
t 

To
 L

o
o

k 
F

o
r 

In
 A

 W
e

b
R

T
C

 T
e

st
in

g
 T

o
o

l?

©2023 Cyara. All rights reserved. www.cyara.com

Is testRTC (and testingRTC) 
The Right Tool 
For You?

testRTC is suitable for all of your WebRTC application lifecycle needs.
testRTC has a variety of “target customers”, from developers and testers, through to IT operations teams and 
support organizations. Each individual will be able to find the correct set of testRTC product that can assist them 
with their daily work - be it automation and scale testing, providing visibility towards the WebRTC production 
infrastructure or assisting in solving user complaints.

At the end of the day, testRTC has a rich and powerful set of products that are suitable for your needs if you are 
using WebRTC.

Only testRTC offers complete monitoring, testing and support 
capabilities
There are other tools out there: commercial or open source, for testing or for monitoring. Some are used to 
monitor users in production environments, while others might be used for test automation.

By contrast, testRTC offers a rich suite of tools:

• With testingRTC you can conduct WebRTC testing automation and do functional tests, stress tests and 
even use it for performance optimizations.

• upRTC lets you conduct active monitoring of your WebRTC infrastructure, while watchRTC is there to 
passively monitor your WebRTC user experience in production.

• qualityRTC and probeRTC together make it possible to diagnose and troubleshoot with ease connectivity 
issues faced by users - something that is becoming more and more important in today’s remote working 
environment.

testRTC provides the tools you need for the full WebRTC application lifecycle - from development - through 
deployment and monitoring - to support. We simulate traffic, capture live traffic, analyze neworks and visualize 
results in ways that make it easier for you regardless of what point in time you are with your WebRTC deployment.

https://cyara.com/
https://www.spearline.com/what-we-do/products/testingrtc/
https://www.spearline.com/what-we-do/products/uprtc/
https://www.spearline.com/what-we-do/products/watchrtc/
https://www.spearline.com/what-we-do/products/qualityrtc/
https://www.spearline.com/what-we-do/products/probertc/


Cyara revolutionizes the way businesses transform and optimize their customer experiences. Cyara’s AI-based CX Transformation 
Platform empowers enterprises to deliver flawless interactions across voice, video, digital, and chatbot experiences. With Cyara, 

businesses improve customer journeys through continuous innovation while reducing cost and minimizing risk. With a 96% customer 
retention rate and world-class Net Promoter Score (NPS), today’s leading global brands trust Cyara every day to deliver customer smiles 

at scale. 

To learn more, visit cyara.com or call 1-888-GO-CYARA.

The Cyara CX Transformation Platform

Copyright ©2023 Cyara. All rights reserved.

Learn more at www.cyara.com

Customer Smiles. Delivered at Scale.
LinkedIn.com/company/Cyara

Twitter.com/GetCyara

YouTube.com/Cyara

At first glance these other alternatives 
and testRTC may seem similar. But take 
a closer look and you’ll see that they can’t 
be more different: testRTC offers a rich set 
of solutions covering the whole WebRTC 
application lifecycle.

testRTC is the first and only solution that 
lets you test, monitor AND support your 
WebRTC application. Come check us out!

The Devil 
is in The 
Details

http://www.cyara.com
http://www.cyara.com
http://LinkedIn.com/company/Cyara
http://Twitter.com/GetCyara
http://YouTube.com/Cyara
http://YouTube.com/Cyara
http://Twitter.com/GetCyara
http://LinkedIn.com/company/Cyara

